ChlIP-Seq

Wednesday (20 September 2023)

New methods and quantitative ChiP-seq (Simon Elsdsser and Carmen Navarro Luzdn)
09:00 - 10:00 Recap previous day (online session)

10.00 - 11.00 ChIP-seq methods (online session)

11.00 - 12.00 ChIP-seq alternatives (online session)

12:00 - 13:00 lunch (offline)

13:00 - 13:30 Introduction to exercises (online session)

13:30 - 16:00 Principles of ChlP-seq and Advanced ChIP Methods (online support)
16:00 - 17:00 Exercises (offline)

16:00 - 17:00 Daily challenge

Simon Elsasser, Kl/ScilLifeLab

simon.elsasser@scilifelab.se
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ChlP-seq Principles
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ChlP-seq Principles

1) Mapping transcription factor binding:

TF-DNA interactions typically don’t
survive lysis and immunoprecipitation
conditions --> we must crosslink the TF
to the DNA beforehand
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ChlP-seq Principles

1) Mapping transcription factor binding:

- TF-DNA interactions typically don’t

survive lysis and immunoprecipitation
conditions --> we must crosslink the TF

to the DNA beforehand
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Experiment design

Sound experimental design: replication, randomisation, control and blocking (R.A. Fisher, 1935)

In the absence of a proper design, it is essentially impossible to partition biological variation
from technical variation

Please visit section Experimental Design and Data Management on the course website for
more information
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ChlP-seq QC: did the ChIP work?

1. Inspect the signal (mapped reads, coverage profiles) in genome browser

e 2. Compute peak-independent quality metrics (cross correlation, cumulative enrichment)

ENCFFI0OPILI sorted. 1 bam ENCFFODOPET sorted. 1 bam picard bam

J

» 3. Assess replicate consistency (correlations between replicates of the same condition)
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Peak detection
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ChlIP-seq peak calling downstream analyses
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o Validation (wet lab)

o Downstream analysis
— Motif discovery
— Annotation
— Integration of binding and expression data
— Integration of various binding datasets
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ChIP-exo reads (x107)

ChlIP-exo: improvement in binding site
identification
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Good ChlIP requires good Antibody

Potential problems with antibodies:

* specificity modified histone (crossreactivity for
other histone sites/modifications)

* specificity for target protein
» cross-reactivity to other epitopes

 Affinity/Avidity of the interaction and stability
against harsh wash conditions

 sensitivity to formaldehyde modification of the
target protein
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ATR-X Syndrome Protein Targets Tandem
Repeats and Influences Allele-Specific
Expression in a Size-Dependent Manner

Martin J. Law,1-®8 Karen M. Lower,1-8 Hsiao P.J. Voon,! Jim R. Hughes,! David Garrick,! Vip Viprakasit,3
Matthew Mitson,’ Marco De Gobbi,' Marco Marra,” Andrew Morris,* Aaron Abbott,* Steven P. Wilder,>
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2013

ATRX Directs Binding of PRC2 to Xist
RNA and Polycomb Targets

Kavitha Sarma,’-%* Catherine Cifuentes-Rojas,’-% Ayla Ergun,?3 Amanda del Rosario,® Yesu Jeon,' %2 Forest White,°
Ruslan Sadreyev,?3“ and Jeannie T. Lee'.%34%*
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Good ChlIP requires good Antibody
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Good ChlIP requires good Antibody

The worse the antibody, the more ChIP will look like input

And normalizing for uneven input is tricky! Options
 ratio ChlP versus background

* background subtraction
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‘2. Cistrome Data Browser

€ Tips
® Check what factors regulate your gene of interest, what factors bind in your interval or have a significant binding overlap with your peak set. Have a try at CistromeDB Toolkit.
e |f you have a Transcription Factor ChIP-seq (and TF perturbed expression) data, Cistrome-GO help you predict the function of this TF.
® Please help us curate the samples which has incorrect meta-data annotation by clicking the button on the inspector page. Thank you!
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Species Biological Sources « Factors
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106A ADNP
Results
Batch Species Biological Source Factor Publication Quality Control
0 Homo sapiens HeLa; Epithelium; Cervix BTAF1 Johannes F, et al. Bioinformatics 2010 o® © ¢
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Crosslinking versus native ChlP

Crosslinking Native

Formaldehyde fixation Lower salt/detergent

Shearing (sonications) or Mnase fragmentation

MNase « Better signal-to-noise for
Increasing signal for strong chromatin
weak/transient Interactors, histones
histone/DNA- interacting Fragment ends demarcate
proteins

footprint, e.g. nucleosome

fragment ends not position
informative with sonication



Applications of ChIP-Seq and related methods

* Map features to genome (--> knowing where a features
is may imply function)

* Specific versus genome-wide feature

* Discover genome-wide correlations (--> generate
experimental hypothesis --> test to establish causation)

I {4

* Think about the meaning: “repressive chromatin”, “activating
mark”, “silencing factor”

* A histone PTM “recruits” a factor
* A factor ‘protects’ a gene from spurious transcription

 Compare conditions, e.g. how does a knockout,

inhibitor, external change in condition affect
epigenome?




Using histone modifications to predict functional regions in the genome

Chromatin signature reveals over a thousand highly
conserved large non-coding RNAs in mammals

Mitchell Guttman'?, Ido Amit', Manuel Garber', Courtney French', Michael F. Lin', David Feldser®, Maite Huarte ",
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Chromatin ‘states’ define functional regions
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9 chromatin states defined by a
combinatorial pattern of enrichment and

depletion for specific chromatin marks
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FIGURE 1 | Adopting chromatin states to decipher the interplay between
epigenetic marks across multiple biological conditions. HMM-based
learning of chromatin states; DNA is depicted in black, histones as blue or
gray circles, and different histone’s PTMs as colored shapes. Chromatin
states identifying relevant combinations of histones PTMs are drawn in the
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underlying diagram (A). Chromatin states can be compared over different cell
types or biological conditions; arrows represent the switch between different
states (B). Heatmap displaying the probability of switching between
chromatin states in different biological conditions (C). Graph depicting causal
relationships among epigenetic marks determined based on (C,D).



Epigenetic Engineering

DNA Methytransferase DNADemethylase
(DNMT3a, 3L) (TET1)
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Histone Methytransferase Histone Demethylase
(PRDM9,DOT1L) (LSD1)

Histone Acetyltransferase Histone Deacetylase
(HDAC3)




Applications of ChIP-Seq and related methods

* Map features to genome (--> knowing where a features
is may imply function)

* Specific versus genome-wide feature

* Discover genome-wide correlations (--> generate
experimental hypothesis --> test to establish causation)

I {4

* Think about the meaning: “repressive chromatin”, “activating
mark”, “silencing factor”

* A histone PTM “recruits” a factor
* A factor ‘protects’ a gene from spurious transcription

* Compare conditions, e.g. how does a knockout,
inhibitor, external change in condition affect
epigenome?

These applications imply that you are interested in
quantitatively comparing occupancies or levels of PTMs!



Interpreting ChIP-Seq signal




Relative quantitation Epigenomic profiles can be compared

Before comparing, we need to ensure that samples are
normalized. Traditional normalization brings all samples
to the same effective sequencing depth, and it is
assumed that then the samples can be compared

guantitatively.

Normalization methods used

e RPKM/FPKM (Reads/Fragments Per Kilobase Million)

e RPGC (Reads Per Genome Coverage, “1x
normalization)

Assumes that relative signal changes but global levels
and background do not change!



ChIP-Seq signal (histone PTM or Binding Protein occupancy)




Interpreting ChIP-Seq signal




/ What does the peak height mean?




What really is "background’?




What really is "background’?



true signal

technical baseline




Relative quantitation — accurate comparison across regions in the genome

6 —
If baseline is known and measurement is proportional,
4 then the ChlP-Signal signal can be considered quantitative
2 —
1 —




Quantitative ChIP-Seq

* Measured signal (=read density)

Shoulder

scales linear (proportional) with
‘true’ signal

e Signal is comparable quantitatively

Fig. 2. Linear relationship between sample concentration and band in-

n
b etwe e n S a m | e S tensity. The signal derived from the protein bands on a Western blot varies
p with the amount of sample extract loaded onto the protein gel. The illustrated
graph depicts a linear and proportional relationship between amount of sample
loaded (x, 2x, 5x) and the relative fluorescence units (R.F.U) captured from the
target bands (y, 2y, 5y). Tail and shoulder end of the data curve capture noise
and saturated signal, respectively. pg, micrograms; R.F.U, Relative fluorescence
units.

* Technical or batch does not
influence the quantitative answer

Absolute quantification further requires that the output can
be understood in a real-world unit (e.g. binding occupancy

or PTM density in fraction/percent)



Quantitative ChIP with Drosophila Spike-in

Biological chromodynamics: a general method for measuring

protein occupancy across the genome by calibrating ChIP-seq ¢

Bin Hu, Naomi Petela, Alexander Kurze, Kok-Lung Chan, Christophe Chapard, Kim Nasmyth =

Nucleic Acids Research, Volume 43, Issue 20, 16 November 2015, Page €132,
https://doi.org/10.1093/nar/gkv670

Published: 30 June2015 Article history v

ChlIPSeqSpike: A R/Bioconductor package for
ChIP-Seq data scaling according to spike-in
control

Descostes N, Tsirigos A, Reinberg D

Preprint from bioRxiv, 22 Feb 2018

Cell Reports

Quantitative ChiP-Seq Normalization Reveals Global

Modulation of the Epigenome

Graphical Abstract

No treatment With treatment

H3K79me2 /_ H3K79me2

Compare epigenomes via
traditional ChlP-seq

Compare epigenomes via
ChIP-Rx

H3K79me2
Signal

H3K79me2
Signal

=

Genes Genes

Difference not observed Difference observed

Highlights
ChIP-seq is a prevailing methodology to investigate and
compare epigenomic states

Lack of an empirical normalization strategy has limited the use-
fulness of ChiIP-seq

ChIP-Rx allows genome-wide quantitative comparisons of his-
tone modification status

Authors

David A. Orlando, Mei Wei Chen, ...,
James E. Bradner, Matthew G. Guenther

Correspondence

dorlando@syros.com (D.A.O.),
mguenther@syros.com (M.G.G.)

In Brief

The lack of an empirical methodology to
enable normalization among chromatin
immunoprecipitation coupled with mas-
sively parallel DNA sequencing (ChIP-
seq) experiments has limited the precision
and comparative utility of this technique.
Orlando et al. describe a method, called
ChIP with reference exogenous genome
(ChIP-Rx), that allows one to perform
genome-wide quantitative comparisons
of histone modification status across cell
populations using defined quantities of a
reference epigenome. They use the
method to detect disease-relevant epige-
nomic changes following drug treatment.

Accession Numbers
GSE60104
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Practical solutions to quantitative scaling

* BAM-based, then carry along scale factor
determined by BAM read counts for scaling on-the-

fly

* BigWig-based, scaled bigwig file can be used in any
downstream analysis



Limitations of Spike-in ChlP

e Spike-in amount has to be accurate in relation to
chromatin amount (think about error in cell counting,
protein assay or pipetting)

* Alternatively, fraction Drosophila reads spiked-in needs
to be determined experimentally by sequencing input.
Some confusion in the field exists if or not input is
taken into account

* Some confusion exists if and when a background
normalization using input can be done while also using
spike-in normalization (how to normalize input? divide
or subtract?)

* Antibody must crossreact with the spike-in species.



Excercise — reanalysis of Orlando data using
Bioconductor package

ChIPSeqSpike: A R/Bioconductor package for
ChIP-Seq data scaling according to spike-in
This tutorial is included from previous workshop. Thanks! control

ChIP-seq with exogenous chromatin spike

Descostes N, Tsirigos A, Reinberg D

e Requirements
o Uppmax Preprint from bioRxiv, 22 Feb 2018
o Local
e Data
e Data preparation Cell Reports
o Fingerprint plots Quantitative ChIP-Seq Normalization Reveals Global
¢ Disclaimer Modulation of the Epigenome

e Using chIpseqspike for ChIPseq signal scaling Graphical Abstract Authors

o Files and directories No treatment With treatment David A. Orlando, Mei Wei Chen, ...,
James E. Bradner, Matthew G. Guenther
. . . @ @ Correspondence
o Data visualization dorlando@syros.com (D.A.O.),
. . q q mguenther@syros.com (M.G.G.)
= Visualization with gene meta-profiles : % % % % %% . % ; % ; % .

o Scaling of signal to exogenous chromatin spike

= Visualization with Boxplots

= Correlation plots
¢ What to do next

H3K79me2 /’_

Compare epigenomes via
traditional ChIP-seq

H3K79me2
Signal
H3K79me2
Signal

Genes

H3K79me2

N

Compare epigenomes via
ChIP-Rx

Genes

Difference not observed

Difference observed

Highlights

ChIP-seq is a prevailing methodology to investigate and

compare epigenomic states

Lack of an empirical normalization strategy has limited the use-

fulness of ChiIP-seq

ChIP-Rx allows genome-wide quantitative comparisons of his-

tone modification status

In Brief

The lack of an empirical methodology to
enable normalization among chromatin
immunoprecipitation coupled with mas-
sively parallel DNA sequencing (ChlIP-
seq) experiments has limited the precision
and comparative utility of this technique.
Orlando et al. describe a method, called
ChlIP with reference exogenous genome
(ChIP-Rx), that allows one to perform
genome-wide quantitative comparisons
of histone modification status across cell
populations using defined quantities of a
reference epigenome. They use the
method to detect disease-relevant epige-
nomic changes following drug treatment.

Accession Numbers
GSE60104






Barcode-first methods

I-ChIP: on-beads barcoding
(1 e (3] (4
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One-pot methods ChlP

A high—throughput ChiP-Seq for large—scale
chromatin studies

Christophe D Chabbert, Sophie H Adjalley, Bernd Klaus, Emilie S Fritsch,
Ishaan Gupta, Vicent Pelechano, Lars M Steinmetz

Cell Reports

Molecular Cell

® Molecular Cell

Online Now Current Issue Archive Journal Information ~ For Authors ~

< Previous Article Volume 61, Issue 1, p170-180, 7 January 2016

TECHNOLOGY

A Multiplexed System for Quantitative Comparisons of Chromatin
Landscapes

Peter van Galen, Aaron D. Viny, Oren Ram, Russell J.H. Ryan, Matthew J. Cotton, Laura Donohue, Cem Sievers, Yotam Drier, Brian B. Liau,
Shawn M. Gillespie, Kaitlin M. Carroll, Michael B. Cross, Ross L. Levine, Bradley E. BemsteirﬂzLj
Published Online: December 10, 2015

Open Archive -i} PlumX Metrics

DO hitp://dx.doi.org/10.1016/.molcel.2015.11.003 | (J§) CrossMark

Quantitative Multiplexed ChIP Reveals Global
Alterations that Shape Promoter Bivalency in Ground

State Embryonic Stem Cells

Graphical Abstract Authors

| Quantitative ChIP with large linear dynamic range |

45

Banushree Kumar, Simon J. Elsasser
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Multiplexed ChIP (MINUTE-ChIP)
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MINUTE-ChIP Quantification

condition A : condition B

modified nucleosomes:

H3K27me3

all modified nucleosomes compete with equal affinity

quantification holds true irrespective of the binding curve

100

anti-H3K27me3

VAR

bound fraction [%]
(6}
T

0 I | | |

® concentration nucleosomes [nM-uM]

v

Barcodes sequenced:  2:1 K |



MINUTE-ChIP Quantification

condition A : condition B

modified nucleosomes:

H3K27me3 A Input Pool

- Treatment
/ R1

Control

Treatment
Y Control R2
e . - R2 18%
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quantification holds true irrespective of the binding curve
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Comparison normal and quantitative ChlP

Comparing naive and ‘primed’” mouse embryonic stem cells
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Multiplexed ChIP has very little technical background

d

RPGCgerum

RPGCserum

Polycomb targets
127 H3K27me3 . Serum
W2
3 B Serum + EZH2i
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0_ e e
] | ) i_ L ] 1
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Highly active genes
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W 2+ EZH2i

- - 0 e e————
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Everything is true
H3K27me3 signal

technical baseline




CTCF guantyitative ChlP-seq

Profile
- | — IAA
Example from our lab: 1 | — NT
MINUTE-ChIP | — TMPyP4 24h
| TMPyP4 6h
anti-CTCF IP B

|IAA treatment degrades CTCF

5.0 1
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29"

|
—
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Excercise — Reanalysis of MINUTE-ChIP data

MINUTE-ChIP -

e Background
e Primary analysis
o Conda environment
o Files
o Running Minute
o Scaling info
o IGV tracks
e Downstream analysis
o Files
o Looking at bivalent genes
o Genome-wide bin distribution

Article | Open Access | Published: 30 May 2022

Polycomb repressive complex 2 shields naive human
pluripotent cells from trophectoderm differentiation

Banushree Kumar, Carmen Navarro, Nerges Winblad, John P. Schell, Cheng Zhao, Jere Weltner,

Laura Baqué-Vidal, Angelo Salazar Mantero, Sophie Petropoulos, Fredrik Lanner & & Simon J.

Elsdsser &

Nature Cell Biology 24, 845-857 (2022) | Cite this article







ChlP-Seq alternatives
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ChlP-Seq alternatives

* Dam-ID
* CUT&RUN
* CUT&Tag
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ChIC, ChEC-Seq CUT&Run

Molecular Cell, Vol. 16, 147-157, October 8, 2004, Copyright ©2004 by Cell Press

ChIC and ChEC: Genomic Mapping Technique ..
of Chromatin Proteins ChIC: Chromatin-immuno cleavage

Manfred Schmid, Thérése Durussel, ble, and significant amounts are lost into the pellet dur-
and Ulrich K. Laemmli* ing centrifugation.
Departments of Biochemistry and Molecular Biology While ChIP is highly successful when applied to solu-
NCCR Frontiers in Genetics ble proteins, such as transcription regulatory proteins,
University of Geneva unpublished experiments with insoluble-type proteins
30, Quai Ernest-Ansermet (such as scaffolding components) in this laboratory ap-
CH1211, Geneva 4 peared less promising. ChIP analyses with such ins * _ ABOUT COMMUNITY
Switzerland ble-type proteins appear afflicted with increased b:  (p:%¢ eLife
B I - = HOME MAGAZINE INNOVATION Q
Chromosomes and Gene Expression @
A An efficient targeted nuclease strategy for high-resolution
Primary AB mapping of DNA binding sites

NAARNGINANNY aoon
Peter ) Skene, Steven Henikoff

O Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, United States
/\<

2 _]( Brief Communication | Published: 28 March 2019

N2 %% * 2% %4 Single-cell chromatinimmunocleavage sequencing
D) é) (scChIC-seq) to profile histone modification

pA-MN Wai Lim Ku, Kosuke Nakamura, Weiwu Gao, Kairong Cui, Gangqing Hu, Qingsong Tang, Bing Ni & & Keji

3 'm Zhao

Nature Methods 16, 323-325(2019) | Cite this article

+Calt Ce“

4 ! Profiling of Pluripotency Factors in Single Cells and
Early Embryos

Secondary AB

)

Graphical Abstract Authors
Sarah J. Hainer, Ana Boskovié,

|_ A0 a . B Y | Kurtis N. McCannell, Oliver J. Rando,




CTCF CUT&Run

A CTCF CUT&RUN (<120 bp) @ 37 “C

DNasel sites DNasel sites
with motif without motif
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Methodology | Open Access | Published: 12 July 2019

Peak calling by Sparse Enrichment Analysis for
CUT&RUN chromatin profiling

Michael P. Meers, Dan Tenenbaum & Steven Henikoff

Epigenetics & Chromatin 12, Article number: 42 (2019) | Cite this article
8983 Accesses | 9 Citations | 12 Altmetric | Metrics




CUT&Run, CUT&Tag

/

Crosslink & Fragmentation
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CUT&Run, CUT&Tag

Sample Input

ChIP-Seq CUTANA™ CUT&RUN CUTANA™ CUT&Tag

Sheared Chromatin

Cells OR nuclei Nuclei

(recommended)
Typical Required Cell # > 1 Million
ldeal Targets Histone PTMs & Histone PTMs & chromatin-interacting Histone PTMs &
chromatin-interacting proteins proteins, including remodelers select validated targets
( )
Secondary Antibody Yes
\ J
@ 3
Library Preparation Yes No (Direct to PCR)
. J
f Protocol Time ) ~ 4 week 2 days 2 days
(Cells > NGS libraries) | (can be automated) (can be automated)
r )
Sequencing Depth > 30 million 3-5 million
\ J
Signal : Noise Low High
- S
Experimental Throughput Low High




Excercise — CUT&RUN vs CUT&Tag vs ChlP

Comparison: H3K27me3 signal in human embryonic stem cells across different methods

MINUTE-ChIP .._..____Jd.w.._._;m_.u.....mlh.._u.u“.u..h._wd.i_

Kumar et. al. Nat Cell Bio (2022)
+EZH2i control

Jmﬂwmmm
CUT&RUN (Henikoff lab) | JLL | ||‘ ||| “ ||I|
CUT&Tag (Henikoff lab) | ‘|| Y ”mh"l‘ l”.ii

ENCODE ChlIP-seq |

«—<—§ Hi—=1 —m —<ip s H
SKAP2 HOXA1 HOXA4 NR_037940 EVX1-AS
HH =+ WA

https://nbis-workshop-epigenomics.readthedocs.io/en/latest/content/tutorials/quantitativeChip/cut-and-tag-
data.html



Weighing pros and cons

* Cell number needed

* Time aspect

* Sighal-to-noise

* Background (think technical versus
biological!)

* Reproducibility

e QCability (e.g. no input)



HMICISNE@:W hmqChIP-seq — cross-method comparison

Comparison: H3K27me3 signal in human embryonic stem cells across different methods

EpiFinder Genome ......____J..;w.._......u.,ma.a...L....lh......uu.....u.. L.._MJ.J_

Kumar et. al. Nat Cell Bio (2022)
+EZH2i control

Jmﬁwmmm
CUT&RUN (Henikoff lab) | JLL | ||‘ ||| “ ||I|
CUT&Tag (Henikoff lab) | ‘|| Y ”mh"l‘ I”.li

ENCODE ChlIP-seq |

«—<—§ Hi—=1 —m —<ip s H
SKAP2 HOXA1 HOXA4 NR_037940 EVX1-AS
HH =+ WA

https://nbis-workshop-epigenomics.readthedocs.io/en/latest/content/tutorials/quantitativeChip/cut-and-tag-
data.html
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New Results A Follow this preprint

Tn5 transposase-based epigenomic profiling methods are
prone to open chromatin bias

Meng Wang, & Yi Zhang
doi: https://doi.org/10.1101/2021.07.09.451758

New Results A Follow this preprint

CUT&Tag recovers up to half of ENCODE ChlIP-seq peaks

Di Hu, Leyla Abbasova, 2 Brian M Schilder, ©2/ Alexi Nott, ‘2’ Nathan G Skene,
Sarah ] Marzi

doi: https://doi.org/10.1101/2022.03.30.486382



Single-cell revolution
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Tools | November 16 2021
High-throughput single-cell epigenomic profiling by
targeted insertion of promoters (TIP-seq)

In Special Collection: Chromatin Biology 2022

Daniel A. Bartlett = , Vishnu Dileep, Tetsuya Handa "=, Yasuyuki Ohkawa "= , Hiroshi Kimura
Steven Henikoff ' , David M. Gilbert &%

+ Author and Article Information W) Check for updates

J Cell Biol (2021) 220 (12): €202103078.  https://doi.org/10.1083/jcb.202103078  Article history

ﬁj Daviaw Hictarv

Article | Published: 15 September 2022

ISSAAC-seq enables sensitive and flexible multimodal
profiling of chromatin accessibility and gene
expressioninsingle cells

Wei Xu, Weilong_Yang, Yunlong Zhang, Yawen Chen, Ni Hong, Qian Zhang, Xuefei Wang, Yukun Hu,
Kun Song, Wenfei Jin & & Xi Chen

Nature Methods 19, 1243-1249 (2022) | Cite this article







